
Architecting a Domain-Driven Branding
Engine in NetSuite
Published July 29, 2025 40 min read

Building a Domain-Driven Branding Engine in
NetSuite Forms

houseblend.io

Page 1 of 20

https://houseblend.io/?utm_source=pdf
https://houseblend.io/?utm_source=pdf

Introduction to Domain-Driven Branding in ERP (NetSuite

Context)

In a multi-subsidiary organization, Domain-Driven Branding refers to tailoring the user interface

and documents to reflect each brandʼs unique identity (logo, colors, messaging) based on the

“domain” or context (such as subsidiary, region, or user role). This concept is crucial in ERP systems

like NetSuite OneWorld, where a single account may serve many divisions or brands. By

implementing domain-driven branding, companies ensure that both internal users and external

stakeholders (customers, vendors) consistently see the correct brand identity, fostering

professionalism and trust. NetSuiteʼs OneWorld subsidiary structure inherently supports some brand

differentiation – for example, each subsidiary can have its own name, address, and logos for forms.

However, out-of-the-box capabilities are limited to basic elements. Many firms desire one system

that dynamically adapts forms and outputs per brand. As NetSuite expert Marty Zigman notes,

“clients want to have one form that drives a different presentation based on the company… a

subsidiary may have a brand image, local mailing address, etc., that need to get on customer

communications”. In other words, the ERP should seamlessly reflect multiple brand identities without

maintaining completely separate systems. This report explores how to architect a branding engine

inside NetSuite – combining technical tools (SuiteScript, custom records, workflows, UI

customization) with strategic considerations (brand consistency across domains, regional

personalization, user experience).

Architecture of a Domain-Based Branding Engine in NetSuite

Designing a branding engine involves two core pieces: (1) A centralized store of branding

attributes (per domain/brand) and (2) Runtime logic to apply those attributes on forms and

documents. At a high level, the engine works as follows:

Brand Configuration Storage: Create a data model to hold brand-specific settings. This could

leverage NetSuite Subsidiary records (augmented with custom fields for additional branding

info) or a dedicated _ Custom Record_ (e.g. “Brand Profile”) for more flexibility. Each brand

entry would contain attributes like logo image file, color codes (hex values for

primary/secondary colors), legal name or “friendly” brand name, slogans or footer text, etc. For

OneWorld users, much of this starts with the subsidiary record – NetSuite lets you upload a

Subsidiary Logo (Forms) to use on printed forms and a Subsidiary Logo (Pages) for the UI

pages of that subsidiary. (These logos are used by standard forms and centers; weʼll build on

houseblend.io

Page 2 of 20

https://houseblend.io/articles/two-tier-erp-with-netsuite
https://houseblend.io/articles/netsuite-the-best-cloud-native-platform-for-cfos-seeking-multi-entity-visibility
https://houseblend.io/articles/building-a-custom-approval-workflow-in-netsuite-for-high-value-transactions
https://houseblend.io/articles/using-customized-segments-in-netsuite-a-comprehensive-guide
https://houseblend.io/?utm_source=pdf
https://houseblend.io/?utm_source=pdf

this.) You can also add custom fields to the Subsidiary record to store extra info like brand color

or tagline. In one real example, a company added a custom “Brand Name” field on each

subsidiary because the legal name was different from the customer-facing brand – this Brand

Name was then used on email templates and forms instead of the LLC name. Alternatively, a

separate Brand custom record can be created if branding needs arenʼt one-to-one with

subsidiaries (e.g. multiple brands under one subsidiary). The key is centralizing these identity

elements so they can be maintained in one place for each domain.

Dynamic Branding Logic: Using SuiteCloud customization (SuiteScript or Workflow), the

engine detects the current context (which “brand domain” is in play) whenever a form is loaded

or a document generated, then applies the corresponding branding attributes. The “domain”

context might be deduced from the recordʼs subsidiary, the userʼs role or subsidiary, a

department/class (if using those to designate brands), or even the request URL or website

domain in some cases. For internal NetSuite forms, typically the recordʼs subsidiary or the

current userʼs subsidiary is the driver. SuiteScriptʼs runtime API provides

runtime.getCurrentUser().subsidiary which gives the current userʼs subsidiary

(OneWorld). You can also get the recordʼs subsidiary via field value on the record (e.g.

scriptContext.newRecord.getValue('subsidiary') in a transaction beforeLoad script). For

external-facing pages (like a _ Customer Center_ or External Forms on different domains), you

might derive branding from the domain of the URL or the specific center role. In any case, the

script logic uses that context to look up the matching brand config (e.g. load the subsidiary or

custom Brand record) and retrieve the needed attributes (logo file ID/URL, color codes, etc.).

Then it modifies the form or output on the fly – for example, by injecting the correct logo,

changing stylistic elements (colors or banner text), and displaying brand-specific messages.

We will explore multiple techniques to implement this runtime behavior in NetSuite, including

SuiteScript user event scripts, Suitelets, and point-and-click workflows.

Engine Output Targets: The branding engine should affect both internal UI forms and

printed/email documents. Internal forms (such as the Sales Order entry form or Customer

record form in NetSuite UI) might show branded elements to guide users, while client-facing

documents (like PDF invoices, order confirmations) absolutely need proper logos and company

info for each brand. NetSuiteʼs Advanced PDF/HTML templates are a primary tool for branded

outputs, since they allow conditional logic and dynamic fields in printed forms. Our engine will

coordinate with advanced templates (or dynamically select templates) to ensure, for instance,

an invoice PDF uses the correct subsidiary logo and brand verbiage. Thus, a complete

architecture spans both UI personalization and document templating.

houseblend.io

Page 3 of 20

https://houseblend.io/articles/building-a-netsuite-powered-customer-portal-with-oauth2-authentication
https://houseblend.io/?utm_source=pdf
https://houseblend.io/?utm_source=pdf

Centralized vs. Distributed Approach: Strategically, a domain-driven engine lets you avoid

duplicating dozens of forms or templates for each brand. Without it, one might create separate

custom forms for each subsidiary (each with hardcoded logos, form layout differences, etc.)

and assign by role or user – but that quickly becomes a maintenance headache as changes

must be propagated to all forms. A scripted engine, by contrast, can present one adaptive

form or one adaptive template that adjusts based on context. This central logic makes updates

(like a new logo or new field) much easier – update the config or code once, and all brands

inherit the change. It also reduces user error (ensuring the right form is always used for the

right brand automatically). We will discuss how to implement such dynamic form switching and

content injection in the next sections.

(The architecture can be visualized as a flow: User/record triggers form load →

SuiteScript/Workflow determines context (e.g. Subsidiary = “Brand A”) → Engine fetches Brand A

settings from custom record or subsidiary fields → Engine modifies the formʼs logo, colors,

messages accordingly before rendering to the user. Similarly for printing: when generating a PDF,

the template or script pulls Brand A̓s logo and details to render in the output.)

Storing and Managing Branding Attributes (Custom Records

& Fields)

A robust branding engine relies on well-structured data about each brand. In NetSuite, you have a

few options:

Leverage Subsidiary Records (OneWorld): Each subsidiary already has fields for Subsidiary

Logo (Forms) and Subsidiary Logo (Pages), which can store image files for use on printed

forms and in the UI pages respectively. In OneWorld, users in an “external” role (like Customer

Center or Vendor Center) will actually see the subsidiaryʼs logo on their pages if configured,

providing some built-in UI branding. For example, enabling “Always Display Subsidiary Name”

can cause the UI to show only the subsidiaryʼs name/logo instead of the parentʼs in certain

contexts. Beyond logos, the subsidiary record contains the legal name, main address, phone,

etc., which often appear on documents. We can attach more branding info by adding custom

fields to the subsidiary. NetSuite allows adding fields to almost any record: for subsidiaries, one

can navigate to Customization > Lists, Records, & Fields > Other Record Fields > New, then

target record type “Subsidiary”. As Steven Hall describes, “this can be easily done by editing

any subsidiary record and selecting Customize > New Field… Now you can add a field to your

subsidiary record”. These could be text fields for hex color codes, a field for “Brand Display

houseblend.io

Page 4 of 20

https://houseblend.io/?utm_source=pdf
https://houseblend.io/?utm_source=pdf

Name” (if different from the subsidiary name), URLs for a subsidiary-specific stylesheet, etc.

Once in place, these fields allow the branding script or template to pull all needed info via a

single record lookup (the subsidiary).

Dedicated Brand Configuration Record: If your branding needs are complex or if you want to

decouple branding from legal subsidiary (for instance, one subsidiary manages multiple brands,

or you have brand concepts that arenʼt tied to financial entities), a custom record might be

preferable. You could create a custom record type “Brand Config” with fields like Domain/Brand

Name (key), Logo File (upload), Primary Color, Secondary Color, Email Template Header,

Invoice Message, etc. Each brand (or domain) would have one record entry. This record might

include a field linking it to a subsidiary (for easy lookup by subsidiary), or you use some

identifier such as the brand code. The advantage of a separate record is flexibility: you could

have multiple brand configs per subsidiary or even use it outside of OneWorld context (e.g.,

different websites on one subsidiary). The disadvantage is youʼd need to ensure this record is

maintained and loaded via scripts, as NetSuite doesnʼt automatically use it anywhere.

Storing Logos and Media: Whether using subsidiary or a custom record, logos and other

images need to reside in the File Cabinet. Typically, you upload each brandʼs logo

(JPG/PNG/GIF) to Documents > Files > Images (or a folder) and then select it in the Subsidiary

form or attach to the Brand record. NetSuite forms require logos of certain max dimensions

(200x60 px for standard forms). When using advanced PDF templates or custom scripts, we will

reference these files (by file ID or URL). Itʼs a best practice to store brand logos in a consistent

folder and naming convention, and if using custom records, perhaps store the file ID or URL in

a field for direct access.

Example – Brand Name Field: To illustrate, consider the earlier example from a multi-

subsidiary company: they wanted to show a Brand Name on customer records and transactions

instead of the formal company name. Initially, they had a workflow with 26 conditions (for 26

subs) to populate a custom “Brand Name” field on customers based on subsidiary – a

maintenance nightmare when adding new subsidiaries. The solution was to add a Brand Name

list field on the subsidiary record itself, picking from a custom list of friendly brand names.

Then, they could source that value dynamically with a single workflow action or script, using a

formula like {subsidiary.custrecord_brand_name} to pull the brand from the linked

subsidiary. This eliminated dozens of workflow entries and ensures any new subsidiary just

needs that field set once, and all forms/emails pull the correct name. This exemplifies how

storing branding data at the source (subsidiary) and using a dynamic reference improves

maintainability.

houseblend.io

Page 5 of 20

https://houseblend.io/?utm_source=pdf
https://houseblend.io/?utm_source=pdf

In summary, set up your branding data model first. If you have NetSuite OneWorld, start by

uploading logos to each subsidiary and adding any extra fields needed (brand colors, etc.) (Source:

velosio.com). If not using OneWorld or if brands transcend subsidiaries, define a custom record for

branding. Populate these records with all relevant info for each domain. This provides the foundation

for the engine logic to draw upon.

Dynamic Form Customization with SuiteScript (UI Level)

With branding data available, we turn to SuiteScript to dynamically alter NetSuite entry forms and

records UI based on that data. SuiteScript (NetSuiteʼs JavaScript API) allows us to inject content or

even redirect to different forms on the server side. Key techniques include User Event scripts

(particularly beforeLoad events) to modify forms as they are loaded, and Client Scripts for any

client-side tweaks. Below are strategies for using SuiteScript 2.x to implement domain-driven UI

changes:

Before Load User Event – Injecting Logos and Styles: A User Event script on beforeLoad

runs on the server whenever a record form is loading (view, edit, or print). At this stage, the

script can access the form object (scriptContext.form) and the record data. We can use this

to add fields or messages to the form. A common trick is to add an Inline HTML field to the

form that contains custom HTML/CSS/JS – effectively allowing insertion of a styled banner or

image. For example, to inject a custom logo or branding banner at the top of a sales order form,

you might do:

javascript

Copy

function beforeLoad(context) { if (context.type === context.UserEventType.VIEW

|| context.type === context.UserEventType.EDIT) { var form = context.form; //

Create an inline HTML field (hidden label) var brandField = form.addField({ id:

'custpage_branding', type: 'INLINEHTML', label: 'Branding' }); // Determine brand

context (e.g. subsidiary) var subsId = context.newRecord.getValue({fieldId:

'subsidiary'}); var brandConfig = loadBrandConfig(subsId); // pseudo-function to

get colors, logo URL // Build HTML content with dynamic logo and style var

logoUrl = brandConfig.logoUrl; var color = brandConfig.colorHex; // Example HTML

snippet: an image and some CSS to change form color var html = "<div

style='padding:5px; margin-bottom:10px; border-bottom: 2px solid "+color+";'>" +

houseblend.io

Page 6 of 20

https://www.velosio.com/blog/netsuite-advanced-pdf-html-template-solution/#:~:text=1,button%20on%20the%20Subsidiary%20record
https://houseblend.io/?utm_source=pdf
https://houseblend.io/?utm_source=pdf

"" + "

<span style='font-size:18px; font-weight:bold; color:"+color+"; margin-

left:10px;'>" + brandConfig.tagline + "</div>"; brandField.defaultValue =

html; } }

The above pseudo-code, when deployed on say the Sales Order record, would prepend a

colored banner with the brandʼs logo and tagline whenever a user views/edits a sales order. We

accomplish this by setting the defaultValue of an inlineHTML field to our custom HTML. The

fieldʼs label can be hidden (e.g., put label as a space or use form.setDisplayType to hidden) so it

doesnʼt show a field title. This technique is effectively how one can embed arbitrary HTML into

NetSuite forms. An example from Prolecto shows injecting client-side JavaScript via an inline

HTML field – “a hidden HTML field that allows you to inject browser-based JavaScript… that will

then find elements and use CSS to change them” (Source: blog.prolecto.com). We are doing

something similar for branding content. Note: NetSuiteʼs official stance is that direct DOM

manipulation isnʼt supported – “SuiteScript does not support direct access to the NetSuite UI

through the DOM. You should access the UI only via SuiteScript APIs”. However, using Inline

HTML fields as above is a supported API method (since weʼre using form.addField), and

injecting simple CSS or images is generally safe. Just avoid overly brittle assumptions about

page structure.

Example – Hiding/Styling Elements: To further illustrate the power of injecting CSS/JS,

consider if you want to recolor certain standard fields or hide buttons on forms by brand.

NetSuite loads jQuery by default in the UI, so your injected script can use it to manipulate

elements. Marty Zigman provides a snippet to hide sublist buttons via jQuery selectors – e.g.,

scr += 'jQuery("#print").hide();' to hide the “Print” button (Source: blog.prolecto.com).

In our case, we could similarly target, say, the form title or specific field labels and apply CSS

(e.g., change color or text). Another approach to highlight brand context could be adding a big

text banner. For instance, if Brand X is a specific subsidiary, we might inject an HTML <h2

style="color: red;">BRAND X SYSTEM</h2> at the top for any record in that sub to make it

obvious to users. Caution: Overusing client-side DOM hacks can make maintenance hard if

NetSuite updates their UI; use judiciously for enhancements that NetSuite doesnʼt natively

support (like dynamic styling). Always test after NetSuite version upgrades.

Form Redirection to Specific Custom Forms: Another SuiteScript approach is to swap out

the form being used entirely, based on criteria. NetSuite allows multiple custom forms per

record type, and normally the form is chosen by user role preferences or form type settings. But

with script, you can force a certain form. Why do this? Perhaps youʼve designed distinct form

layouts for each brand (different field group ordering, etc.) and want the user to automatically

houseblend.io

Page 7 of 20

https://blog.prolecto.com/2018/09/22/learn-how-to-hide-netsuite-sublist-buttons-and-other-html-elements/#:~:text=Below%20is%20a%20NetSuite%20beforeLoad,visibility%20to%20hidden%20via%20JQuery
https://blog.prolecto.com/2018/09/22/learn-how-to-hide-netsuite-sublist-buttons-and-other-html-elements/#:~:text=%2F%2Ffor%20every%20button%20you%20want,addcontact%22%29.hide
https://houseblend.io/?utm_source=pdf
https://houseblend.io/?utm_source=pdf

get the correct one without manually switching. In a beforeLoad UE, if you detect the current

form is not the one you want, you can use the redirect module to reload the record with a

specified cf (custom form) parameter. Marty Zigman demonstrates this: “if (custForm != 108)

… redirect.toRecord({ type: record.Type.CUSTOMER, id: ..., parameters: {‘cf :̓ ‘108ʼ} })”. Here,

form 108 was the desired form. You could map each subsidiary to a form ID (perhaps stored in a

custom table or script parameters) and redirect accordingly. The result is the user never sees

the wrong form; the script immediately serves the correct one for that brand. This method

trades the complexity of maintaining many forms (one per brand) for a guarantee of correct

form usage. If your branding differences are extreme (completely different form layouts per

brand), this might be a viable approach in combination with other techniques. Otherwise, the

inline customization approach can often eliminate the need for separate forms.

SuiteScript UI Message Banners: Starting in NetSuite 2018.2, thereʼs a supported way to

show banner messages on forms via the form.addPageInitMessage() server API or

N/ui/message module in client scripts. These appear as colored dismissible banners at the top

of the form – useful for alerts or contextual info. While typically used for notifications (e.g.,

“This order is locked because...”), one could repurpose them for branding cues. For example, a

green info banner that says “You are viewing: Brand X Environment” could be shown on all

Brand X records. This is less about style and more about messaging. Steven Hall points out that

pageInitMessage can be triggered in a beforeLoad UE, based on any record data. If branding

logic needs to convey a message (like region-specific disclaimer for internal users), this is a

clean built-in method. However, for visual branding (logos/colors), the inline HTML field is more

flexible.

Illustration: Below is an example of an Inline HTML field used to display a highlighted message on a

form (from Sikich). In that use-case, a workflow populates the field with a yellow banner if a Bill

record is on hold. The same concept can inject brand-specific banners or images dynamically:

Example of an Inline HTML field injecting a custom colored message on a form. In a branding

engine, similar fields can embed logos or brand-specific notices conditionally (e.g., based on

subsidiary)

The above image demonstrates how flexible Inline HTML can be – “the HTML is very flexible.

Besides text you can embed elements like images and GIFs”. In our context, we could embed the

correct logo image tag for the subsidiary.

Client Scripts for Fine-Tuning: While server-side beforeLoad is usually sufficient, there are

cases for client scripts. For instance, if you need to change something after user interaction or

based on form field changes, a client script might toggle branding elements. But importantly,

houseblend.io

Page 8 of 20

https://houseblend.io/?utm_source=pdf
https://houseblend.io/?utm_source=pdf

you can also use client script to apply CSS after the page is loaded (since it runs in the

browser). If some elementʼs ID is only known then, a client script could adjust it. Another hack is

using a Portlet (dashboard portlet script) or a Suitelet page as a container to load custom

CSS/JS that affects the UI globally. Some admins have created a “stylesheet portlet” that injects

a in user preferences (Classic, Accounting, etc.), but those are limited and not brand-specific.

So custom CSS injection is the only way to truly recolor the UI by brand. Use with caution and

thorough testing.

In summary, SuiteScript provides the tools to dynamically alter forms at load-time – adding

branded content, selecting the proper form, and guiding the user experience. By using beforeLoad

events to insert logos, color accents, or brand names, you ensure that as users navigate records,

they are always aware of the brand context. Next, weʼll see how to extend this concept to the

printed and emailed forms sent to customers.

Branding Client-Facing Documents (Advanced PDF

Templates & SuiteScript)

Consistent branding must extend to transaction documents – invoices, sales orders, purchase

orders, customer statements, etc. NetSuiteʼs Advanced PDF/HTML Templates feature is key here,

allowing highly customized printouts with logic. A domain-driven branding engine should enable one

template to serve multiple brands by pulling the right logos and details for each domain. Letʼs

examine how to do this:

Advanced PDF Templates Overview: Advanced PDF/HTML templates use FreeMarker syntax

to merge record data into HTML/PDF output. Unlike old PDF layouts, advanced templates are

highly customizable – developers can edit the HTML/CSS and include conditional logic, loops,

and references to related records. For multi-brand purposes, a single advanced template can

incorporate conditions on subsidiary (or another field) to change logos, titles, or even styles.

NetSuite does have a nuance: when an advanced template is used, it automatically includes

the company logo by default (the one set in Company Information as Company Logo (Forms)).

In OneWorld, however, you usually want the subsidiaryʼs logo. Thankfully, the

companyInformation and subsidiary objects are available in the templateʼs data model (with

some caveats). A standard invoice template might use ${companyInformation.logoUrl} to

print the main logo. To use each subsidiaryʼs logo, you can replace that with the subsidiary-

specific reference. Oracleʼs documentation suggests creating separate templates per

subsidiary, or using a little trick in the code. For example, Velosioʼs guide suggests: “change

houseblend.io

Page 9 of 20

https://houseblend.io/?utm_source=pdf
https://houseblend.io/?utm_source=pdf

${companyInformation.logoUrl} to ${subsidiary.logo@Url} ” in the template source

(Source: velosio.com). This FreeMarker syntax ${subsidiary.logo@Url} fetches the

subsidiaryʼs “Logo (Forms)” file URL. By doing this in a unified template, whenever the

transactionʼs subsidiary has a logo file set, that logo will appear on the PDF instead of the

parent logo (Source: velosio.com). This simple one-line change is often the easiest way to get

multi-subsidiary logos on documents, as long as youʼve uploaded logos on each subsidiary

(Step 1 in Velosioʼs guide) (Source: velosio.com). After modifying the template, you associate it

with your custom transaction form and ensure the form is set to use Advanced PDF (Source:

velosio.com). Now the same template file serves all subsidiaries, swapping logos based on

context.

Customizing Other Branding Elements in Templates: Beyond logos, your invoices or forms

might need different addresses, company names, tax IDs, or legal text per subsidiary/brand.

NetSuite provides the primary subsidiary address and legal name via the record context (for

transactions, the subsidiary fields can be accessed if included via print template context). If

certain data isnʼt directly available, one approach is to add those to the record via sourcing

(like the earlier trick of sourcing subsidiary fields onto the transaction). For example, if the

invoice template canʼt directly see the subsidiaryʼs tax registration number, you could create a

custom transaction field that sources {subsidiary.taxid} on afterSubmit and then use that

in the template. Another approach is using SuiteScriptʼs rendering capabilities: SuiteScriptʼs

render.Transaction() can produce PDFs and allows you to inject custom data. Marty

Zigmanʼs Content Renderer Engine (CRE) is an advanced example that joins multiple saved

searches to provide rich data to templates. In one case, he joined the Subsidiary record to

include all its fields in an invoice template (since out-of-box, the advanced PDF didnʼt include

subsidiary fields). The general idea is that with either FreeMarker logic or a pre-processing

script, you ensure each brandʼs specific data is present in the templateʼs context. You can use

<#if> conditions in the template: e.g., <#if record.subsidiary.internalId == 3>…HTML

for brand A…<#elseif ...>…</#if> . This works but hardcodes IDs in the template. A more

maintainable way is to drive it from data: e.g., if you had a custom “Subsidiary Brand Name”

field (like OurBrand vs LegalName), use ${record.custbody_brand_name} in the template to

print the friendly name. As long as that field is sourced with the correct value (via script or

workflow) on each transaction, the template will reflect the proper brand name automatically,

without complex if/else logic.

Multiple Templates vs One Template: There are two schools of thought. One dynamic

template (with conditional logic for all brands) means fewer files to maintain – one update

applies to all, ensuring consistency. However, if the designs are drastically different per brand

houseblend.io

Page 10 of 20

https://www.velosio.com/blog/netsuite-advanced-pdf-html-template-solution/#:~:text=Image%3A%20NetSuite%20advanced%20PDF%20template
https://www.velosio.com/blog/netsuite-advanced-pdf-html-template-solution/#:~:text=Image%3A%20NetSuite%20advanced%20PDF%20template
https://www.velosio.com/blog/netsuite-advanced-pdf-html-template-solution/#:~:text=Step%201%3A%20Add%20the%20subsidiary,logo%20in%20the%20subsidiary%20setup
https://www.velosio.com/blog/netsuite-advanced-pdf-html-template-solution/#:~:text=Step%203%3A%20Verify%20that%20the,the%20customized%20advanced%20PDF%2FHTML%20template
https://houseblend.io/?utm_source=pdf
https://houseblend.io/?utm_source=pdf

(different layouts, entirely different branding guidelines), the conditional logic may become

messy. In those cases, you might opt for multiple templates, one per brand, and then use

SuiteScript or NetSuiteʼs form preferences to select the right template. For example, you could

create a custom transaction form for Brand A invoices that points to Brand A̓s template, another

for Brand B, etc., and then use a beforeLoad script to switch the form (as discussed) so that the

correct template is used. This approach was how many implemented multi-logo before realizing

the template code trick – they made separate invoice templates for each subsidiary (Source:

velosio.com). With the {subsidiary.logo@Url} solution, separate templates solely for logo

differences arenʼt needed; you only need separate templates if layout or wording differs

fundamentally. Best practice: strive for a single template whenever possible, using dynamic

data, to minimize duplication. Use separate templates for genuinely unique designs (and

manage them via naming conventions or SDF for deployment).

Incorporating Regional/Language Differences: If operating across regions, branding might

also involve language translations or legal wording differences. NetSuiteʼs advanced templates

support internationalization – they can automatically translate certain standard fields, and you

can create multiple language versions of a template. For domain-driven branding, consider

storing any region-specific text (like a localized slogan or regulatory footer) in the branding

config record as well. Then, at render time, either source it into the record or fetch it via

SuiteScript. For example, you might have a custom field “Invoice Footer Message” on the

subsidiary. In the template, simply print that fieldʼs value (which would vary per subsidiary). If

the field is not directly accessible, you could use SuiteScript in a beforeLoad (or a beforePrint

user event) to copy it into a custom transaction field for the template to use. Some

organizations use a hybrid: separate templates for each language (to handle text translations),

but within each template, dynamic per-brand logos and addresses. Plan your approach based

on how distinct the output needs to be.

Using SuiteScript Rendering (Advanced): NetSuiteʼs N/render module allows you to script

the generation of PDFs or other outputs programmatically. This is useful if you need to produce

documents in a batch or automatically email them. You can load an advanced template by

script, supply it a custom data context (even data not from NetSuite), and generate output. Our

branding engine could include a script that, when emailing a transaction, automatically picks a

template or even modifies the HTML on the fly to insert brand elements. However, this is usually

not needed if you configure the templates as above. One interesting use case might be if logos

are stored externally – for instance, in the earlier Prolecto article, they fetched customer logos

from a service (Brandfetch) at runtime to embed in proposals. They leveraged a custom

rendering engine to do an API call for the logo based on the customerʼs domain, then included

that image URL in the PDF generation. This is beyond standard NetSuite but shows the

houseblend.io

Page 11 of 20

https://www.velosio.com/blog/netsuite-advanced-pdf-html-template-solution/#:~:text=Do%20you%20need%20to%20print,the%20NetSuite%20advanced%20PDF%2FHTML%20template
https://houseblend.io/?utm_source=pdf
https://houseblend.io/?utm_source=pdf

possibilities: the engine could retrieve brand assets on the fly if not stored in NetSuite, ensuring

always-up-to-date logos without manual uploads. For our scope, assuming logos are stored in

NS, we donʼt need external calls – but note that SuiteScript can call out to external REST APIs if

needed (with SuiteCloud Plus or Map/Reduce contexts for long-running processes).

Testing Document Outputs: Ensure to test generated PDFs for each brand thoroughly. Each

subsidiary/brand should have an example transaction where you verify the logo, company name,

address, etc., appear correctly. Check that any style (colors/fonts) look good – sometimes a

templateʼs CSS might need adjustments if, say, a brandʼs logo has different aspect ratio (you

might enforce max width in CSS to handle longer logos). Also verify email templates if used: you

might create corresponding email templates that include branding (like an email header image).

NetSuite email templates (using Freemarker, similar to PDFs) can also use

${subsidiary.logoUrl} in the template script. If you prefer script-generated emails, you can

assemble an HTML body with the proper brand logo URL. One Stack Overflow example showed

sourcing the logo in a script for an email template, similar approach of loading subsidiary and

getting the logo file URL. The principle is consistent: use the data from subsidiary or brand

record to populate the communication.

Real-World Scenario: Imagine a global company “Acme Corp” with two brands: Acme Industrial and

Acme Retail, each a subsidiary. Users create quotes and orders in one NetSuite account. With our

branding engine, when a user opens a Retail sales order, the form shows the Acme Retail logo and

perhaps a green color theme; if they open an Industrial order, they see the Industrial logo and a

blue theme. When printing or emailing the order confirmation to the customer, the PDF

automatically has the correct logo and the footer text (“Thank you for choosing Acme Retail” vs

“Acme Industrial”). All this happens without the user needing to manually select forms or templates

– itʼs driven by the transactionʼs subsidiary. If a new brand/subsidiary is added, the admin simply

uploads the new logo and fills out the branding fields on the subsidiary record; the existing scripts

and templates then include it by referencing ${subsidiary.logo@Url} and other dynamic fields,

as long as theyʼve been set up once (Source: velosio.com). This ensures brand consistency and

saves time. Marty Zigman emphasizes that “clients want one form that drives different presentation

based on the company” – our combined approach on UI and PDF templates achieves that in

practice.

houseblend.io

Page 12 of 20

https://www.velosio.com/blog/netsuite-advanced-pdf-html-template-solution/#:~:text=Image%3A%20NetSuite%20advanced%20PDF%20template
https://houseblend.io/?utm_source=pdf
https://houseblend.io/?utm_source=pdf

Detecting Domain and User Context for Branding Logic

Accurately determining “which brandʼs settings to apply” is a crucial part of the engine. Weʼve

touched on this, but letʼs summarize the methods and considerations for context detection in

NetSuite:

By Subsidiary (for Transactions/Entities): In OneWorld, most transaction and entity records

have a Subsidiary field. This is usually the primary key for brand context. In user event scripts,

you can retrieve it from the record (newRecord.getValue('subsidiary')). In advanced PDF

templates, you have record.subsidiary available (though not all fields are exposed by

default). If you need additional subsidiary info in templates, you might use a join or script as

described. For internal UI scripts, using the subsidiary is straightforward since the record is

already loaded. One thing to consider: multi-subsidiary customers or vendors – if a customer

is linked to multiple subs, the subsidiary on a sales transaction will dictate branding, not the

customerʼs primary sub. So always use the transactionʼs subsidiary or whichever is most

relevant to the current context.

By Current User Role/Center: Some internal pages (like custom Center tabs or dashboard

portlets) might not be tied to a subsidiary explicitly. In such cases, you may fall back to the

userʼs role or center type. For example, you might have separate roles for each brandʼs team. If

so, the script can get runtime.getCurrentUser().role (returns role ID) and decide branding

from that. Alternatively, if each role is restricted to a subsidiary, then userʼs subsidiary (runtime)

will effectively indicate brand. Note that runtime.getCurrentUser().subsidiary gives the

internal ID of the subsidiary associated with the user (typically their employeeʼs primary

subsidiary). Be careful: if an admin has access to all subs, this might just be the parent

company on their user record, not the one they are currently “working with”. NetSuite doesnʼt

have a concept of “current subsidiary context” beyond the record youʼre viewing or the role

restrictions. If needed, you could present a selector for context – but generally, using the

recordʼs subsidiary or a role-specific approach covers it.

By URL Domain (External Forms/Commerce): If your NetSuite account serves external

customer forms or a commerce site on multiple domains, you might need to detect the domain

name. For instance, NetSuiteʼs SuiteCommerce or web store can have multiple domains (one

per country or brand). If youʼre using Online Customer Forms (for lead capture or case capture),

unfortunately NetSuite typically uses a generic extforms.netsuite.com URL or a single domain.

To truly have forms on separate domains with unique branding, a common solution is

embedding the form in your website or using a Suitelet that is domain-specific. In a Suitelet

houseblend.io

Page 13 of 20

https://houseblend.io/?utm_source=pdf
https://houseblend.io/?utm_source=pdf

script, you can inspect request.headers['Host'] to get the domain host name that was hit,

and then decide branding. Or pass a custom parameter in the URL (e.g., &brand=Retail) that

the Suitelet or UE script can read (scriptContext.request.parameters.brand). Then load

the corresponding brand record. While this is advanced, itʼs doable – especially useful for

customer center or partner center logins on different domains (though typically each

center is tied to one subsidiary anyway). There was a community question about using custom

domains for external forms to provide a seamless branded experience – the approach would be

similar: host the form on a branded domain and ensure the form fields tie back to the correct

subsidiary or brand. In summary, for external use, leverage the environment (domain, URL

parameters, or separate forms each coded to a brand) to know which brandʼs info to display.

By Custom Classification (Department/Class): In some NetSuite setups, Department or

Class might be used to indicate a brand or product line. If subsidiaries are not an option (e.g.,

you donʼt have OneWorld but still have multiple brands), you could key off another field. For

example, a non-OneWorld account might have a custom field “Brand” on transactions. The

branding engineʼs logic then uses that field value to select a brand config record. The

implementation remains similar, just replace references to subsidiary with brand field. Ensure

the field is populated on all relevant records (possibly defaulting from customer or item). This is

a bit more custom but necessary in single-entity multi-brand scenarios.

Context Persistence: NetSuiteʼs UI is stateless between page loads, so our scripts run each

time to reassess context. If a user switches context (e.g., edits an order and changes the

subsidiary field), a client script might be needed to immediately update branding on the form

(like switching the logo on the fly). Alternatively, you can rely on the user saving and reloading

the record (the next beforeLoad will catch the new subsidiary and adjust branding). For a

smoother UX, a client scriptʼs fieldChanged event on the subsidiary could clear/set some

branding field or message to indicate “youʼve changed the brand – form will update after save”.

Fully dynamic swapping of all branding elements on the form without reload is complex and

usually not required operationally (since typically, you create a transaction already knowing

which subsidiary youʼre under).

In summary, determine the key field or indicator that identifies the brand domain in each

context, and use SuiteScript to branch your logic on that. The most common and reliable indicator

is the subsidiary ID for transactions and the userʼs role (or restricted subsidiary) for non-transaction

pages. Our engine essentially does:

javascript

Copy

houseblend.io

Page 14 of 20

https://houseblend.io/?utm_source=pdf
https://houseblend.io/?utm_source=pdf

let brandId; if (record.type has subsidiary) { brandId =

record.getValue('subsidiary'); } else { brandId =

runtime.getCurrentUser().subsidiary; }

and then uses brandId to fetch branding data. This ensures the correct brand attributes are pulled

every time.

Maintaining Consistency Across Brands and Environments

When implementing multiple brands, a major goal is consistency – both within each brand (all

touchpoints look uniform) and across the system (the engine behaves predictably for all brands).

There are several best practices and considerations to maintain the system in the long run:

Centralize Style Guidelines: Treat your branding attributes like a style guide. Decide on a

standard set of parameters (color scheme, fonts, logo usage guidelines, etc.) that every brand

will have in the config. This makes your engine extensible. For instance, if you add a “secondary

logo” or a “watermark image” later, add it for all brands in the config structure (even if some

donʼt use it). This avoids one-off custom code for a single brand. It also helps in testing – you

can systematically go through each brand config and ensure each field is filled. If, say, one

brand didnʼt have a color set, your script should handle that gracefully (maybe use a default

corporate color).

Consistent User Experience: Ensure that internal users who work with multiple brands see a

familiar form structure – only the branding visuals differ. This consistency in form layout is

important so users donʼt get confused switching contexts. Itʼs tempting to heavily customize

forms per brand, but unless necessary, keep the general layout and fields uniform; just skin it

with branding. This also aligns with NetSuiteʼs own recommendation to standardize processes

across subsidiaries while allowing necessary localization. A sales rep should follow the same

steps to enter an order regardless of brand, with the branding engine simply confirming which

brandʼs order theyʼre in via logos or color cues.

Managing Shared vs. Distinct Elements: Identify what content is global (shared across all

brands) vs brand-specific. For example, payment terms text on invoices might be global (same

for all subsidiaries), so keep that in the template generically. But the customer service contact

info might vary by region/brand. For such elements, consider storing them in the brand config

(e.g., a “Support Email” field per brand). This way, the template can insert the appropriate

houseblend.io

Page 15 of 20

https://houseblend.io/?utm_source=pdf
https://houseblend.io/?utm_source=pdf

support email per brand in the footer. A mistake would be hardcoding something like

support@acme.com in the template when each brand has its own support email – that would

break brand consistency.

Testing in Sandbox: When developing this system, use a NetSuite Sandbox (or Release

Preview environment) before deploying to production. Sandbox should have a replica of

subsidiaries and ideally some test records for each brand. Upload test logos (they can be

watermarked “Test” to avoid confusion with real docs). One challenge is that internal IDs (of

subsidiaries, custom fields, etc.) might differ between sandbox and production. If your script

uses internal IDs (e.g., if subsidiary internal IDs are different), consider using script parameters

or a mapping table that can be adjusted per environment. Alternatively, use external IDs or

some unique field to look up the correct record in code. For example, if Brand A subsidiary has

externalId “BrandA”, your script could search for subsidiary with externalId “BrandA” rather than

assume internal ID 3. This way, sandbox vs prod differences are mitigated, as long as you set

externalIds consistently. Also test the bundle/SDF deployment of all custom objects – custom

forms, script deployments, template files, etc., to ensure nothing is missing.

Promotion to Production: Once satisfied, deploy the solution during a low-impact time. Verify

each brandʼs forms and outputs in production with a small group. Itʼs wise to inform users of the

changes (“Weʼve updated the system to automatically show brand-specific logos and colors – if

something looks off, let IT know”). Have a rollback plan: this could simply be disabling the user

event scripts and reverting to standard forms if a critical issue arises. However, if thoroughly

tested, issues should be minimal.

Ongoing Maintenance: Document the configuration – e.g., “For a new subsidiary/brand, do

steps X, Y, Z: upload logo, set color fields, add to config list, etc.”. The system should be largely

data-driven now. If a logo needs updating, you update the Subsidiary Logo file and voila – all

forms and templates using ${subsidiary.logo@Url} will show the new logo (no code change

needed). If brand colors change, just edit the custom field value for that brand. One area to

watch is email templates or any hardcoded text that might still reference old brand info; try to

centralize those through the config as well.

Monitoring and Error Handling: Implement some logging in your scripts. For example, if the

script fails to find a brand config for a context, log an error (and maybe default to a safe

behavior). NetSuiteʼs script logs can alert you to any misconfiguration (like “No logo URL found

for subsidiary X”). You might even create a dashboard saved search listing each subsidiary and

whether all branding fields are populated, to catch any missing pieces proactively.

houseblend.io

Page 16 of 20

mailto:support@acme.com
https://houseblend.io/?utm_source=pdf
https://houseblend.io/?utm_source=pdf

Challenges: One challenge is scale – NetSuite OneWorld supports up to 125 subsidiaries. If

you truly had 125 brands, the engine might need optimization (e.g., caching config data rather

than querying each time). SuiteScript 2.x has a caching module or you can store frequently

used data in custom cache records. Also, if multiple users are generating PDFs simultaneously

with external logo fetches (like the Brandfetch scenario), consider rate limits and implement

caching as done by Prolecto (they cached the retrieved logo URL in NetSuite after first fetch).

Another challenge can be user uptake – ensure users know that form selection is now

automatic; they should not try to override forms. You might even hide the “Custom Form”

selector from the form if your script is controlling it, to avoid confusion.

Security & Permissions: Make sure the scripts have proper permissions. A beforeLoad script

that loads a custom record (brand config) or file may require the script deployment to have

appropriate audience or permission (scripts usually run with admin privileges in user events, but

if not, ensure the file cabinet images are accessible to the roles that need to see them on

pages). If using Suitelets or external, ensure only intended users can access them (add some

token or make them available without login if truly public with careful consideration).

Finally, keep in mind the ultimate goal: a unified ERP that still respects the distinct identities of each

business domain. This not only provides a polished external image (customers get invoices with the

right logo, avoiding confusion) but also helps internally – it “brand-orients” employees to the correct

processes and data. Brand consistency across channels is a known driver of customer trust, and

even internal consistency can drive user adoption and reduce errors (e.g., sending the wrong

branded document to a client). Our domain-driven branding engine in NetSuite ensures that

consistency by design.

Conclusion

Implementing a Domain-Driven Branding Engine in NetSuite forms is a multidisciplinary effort that

blends technical NetSuite customization with strategic branding management. By centrally

storing brand attributes (logos, names, colors, messages) and leveraging SuiteScript, workflows,

and advanced PDF templates, organizations can automate the enforcement of brand identity across

all NetSuite interfaces – from on-screen forms to printed PDFs and emails. We began by

establishing the relevance: in modern multi-brand enterprises, itʼs imperative that an ERP not be a

one-size-fits-all shell but rather an adaptable platform that “speaks” each brandʼs language and

style. Using NetSuiteʼs robust platform, we devised an architecture where branding logic is

abstracted and centralized, minimizing duplication.

houseblend.io

Page 17 of 20

https://houseblend.io/?utm_source=pdf
https://houseblend.io/?utm_source=pdf

On the technical side, we demonstrated how to use SuiteScript beforeLoad user events to inject

dynamic content (like an HTML field with a brandʼs logo and styling) and even redirect to brand-

specific forms when needed. We also explored a no-code alternative using Workflows: by creating

an Inline HTML custom field and setting it via workflow conditions, admins can achieve simple

branding messages or images without writing script (NetSuite allows setting Inline HTML field

values on before load via workflow, which is a special case not allowed for other field types). This

can be a good option for basic needs or where coding resources are limited. For documents, we

tapped into Advanced PDF templates to dynamically swap logos using the built-in context

({subsidiary.logo@Url}) (Source: velosio.com) and to incorporate subsidiary-specific data. We

referenced expert insights showing that one form or template can handle multiple brands if

designed smartly – reducing maintenance overhead significantly.

On the branding strategy side, we discussed maintaining consistency and governance: ensuring

every brand variant still aligns with the overall corporate standards and delivering a smooth user

experience. By automating brand selection (based on subsidiary or role), we eliminate user error in

choosing correct letterheads or forms, which protects brand integrity. We also highlighted real-

world cases: e.g., populating a friendly brand name instead of legal name to improve customer

communications, and addressing the challenge of scaling workflows which was solved by moving

data into subsidiary fields. These examples underscore the importance of modeling your data and

processes in a scalable way.

Going forward, companies implementing such an engine should keep documentation for adding new

brands and consider version controlling their scripts and templates (SuiteCloud Development

Framework – SDF – can manage script and template files in a project for deployment). This way,

your branding engine becomes a maintained feature of your NetSuite account, evolving with your

business. Itʼs also prudent to monitor after go-live – for instance, if a user finds a form that didnʼt

get the branding (maybe a corner case record type), you can update the script to cover it.

NetSuiteʼs rich ecosystem of SuiteApps and communities means there are often code examples

and solutions to draw on (as we did via sources like Prolecto and others), but each companyʼs

branding needs are unique, so tailor the engine to fit your requirements.

In conclusion, a domain-driven branding engine in NetSuite is entirely achievable with current tools.

It showcases the power of NetSuiteʼs platform: with a bit of scripting and configuration, your ERP

can be both multi-tenant (one system) and multi-experience (many brand faces). This leads to

a unified backend for efficiency, while still honoring the distinct customer-facing personas of each

houseblend.io

Page 18 of 20

https://www.velosio.com/blog/netsuite-advanced-pdf-html-template-solution/#:~:text=Image%3A%20NetSuite%20advanced%20PDF%20template
https://houseblend.io/?utm_source=pdf
https://houseblend.io/?utm_source=pdf

brand. By following the approaches outlined – from data modeling to SuiteScript injection and

template customization – professionals can build an in-depth, automated branding solution that

enhances both corporate image and user efficiency.

Sources: The techniques and best practices discussed are backed by NetSuiteʼs official

documentation and expert community insights. Key references include Oracleʼs help on subsidiaries

and advanced templates, expert blogs detailing script patterns for dynamic forms and UI tweaks

(Source: blog.prolecto.com), and case studies on multi-subsidiary configurations (Source:

velosio.com). These sources (cited throughout) offer further reading and examples for those who

wish to deepen their implementation or explore specific code samples. By leveraging such

resources and the guidelines in this report, you can confidently implement a Domain-Driven

Branding Engine that makes NetSuite an even more powerful platform for your multi-brand

business.

Tags: netsuite, erp, suitescript, domain-driven branding, netsuite oneworld, ui customization, branding

engine, subsidiary management

About Houseblend

HouseBlend.io is a specialist NetSuite™ consultancy built for organizations that want ERP and integration

projects to accelerate growth—not slow it down. Founded in Montréal in 2019, the firm has become a trusted

partner for venture-backed scale-ups and global mid-market enterprises that rely on mission-critical data

flows across commerce, finance and operations. HouseBlendʼs mandate is simple: blend proven business

process design with deep technical execution so that clients unlock the full potential of NetSuite while

maintaining the agility that first made them successful.

Much of that momentum comes from founder and Managing Partner Nicolas Bean, a former Olympic-level

athlete and 15-year NetSuite veteran. Bean holds a bachelorʼs degree in Industrial Engineering from École

Polytechnique de Montréal and is triple-certified as a NetSuite ERP Consultant, Administrator and

SuiteAnalytics User. His résumé includes four end-to-end corporate turnarounds—two of them M&A exits—

giving him a rare ability to translate boardroom strategy into line-of-business realities. Clients frequently cite

his direct, “coach-style” leadership for keeping programs on time, on budget and firmly aligned to ROI.

End-to-end NetSuite delivery. HouseBlendʼs core practice covers the full ERP life-cycle: readiness

assessments, Solution Design Documents, agile implementation sprints, remediation of legacy

customisations, data migration, user training and post-go-live hyper-care. Integration work is conducted by

in-house developers certified on SuiteScript, SuiteTalk and RESTlets, ensuring that Shopify, Amazon,

houseblend.io

Page 19 of 20

https://blog.prolecto.com/2018/09/22/learn-how-to-hide-netsuite-sublist-buttons-and-other-html-elements/#:~:text=%2F%2Fcreate%20an%20inline%20html%20field,INLINEHTML
https://www.velosio.com/blog/netsuite-advanced-pdf-html-template-solution/#:~:text=Step%201%3A%20Add%20the%20subsidiary,logo%20in%20the%20subsidiary%20setup
https://houseblend.io/?utm_source=pdf
https://houseblend.io/?utm_source=pdf

Salesforce, HubSpot and more than 100 other SaaS endpoints exchange data with NetSuite in real time. The

goal is a single source of truth that collapses manual reconciliation and unlocks enterprise-wide analytics.

Managed Application Services (MAS). Once live, clients can outsource day-to-day NetSuite and Celigo®

administration to HouseBlendʼs MAS pod. The service delivers proactive monitoring, release-cycle

regression testing, dashboard and report tuning, and 24 × 5 functional support—at a predictable monthly

rate. By combining fractional architects with on-demand developers, MAS gives CFOs a scalable alternative

to hiring an internal team, while guaranteeing that new NetSuite features (e.g., OAuth 2.0, AI-driven insights)

are adopted securely and on schedule.

Vertical focus on digital-first brands. Although HouseBlend is platform-agnostic, the firm has carved out a

reputation among e-commerce operators who run omnichannel storefronts on Shopify, BigCommerce or

Amazon FBA. For these clients, the team frequently layers Celigoʼs iPaaS connectors onto NetSuite to

automate fulfilment, 3PL inventory sync and revenue recognition—removing the swivel-chair work that

throttles scale. An in-house R&D group also publishes “blend recipes” via the company blog, sharing

optimisation playbooks and KPIs that cut time-to-value for repeatable use-cases.

Methodology and culture. Projects follow a “many touch-points, zero surprises” cadence: weekly executive

stand-ups, sprint demos every ten business days, and a living RAID log that keeps risk, assumptions, issues

and dependencies transparent to all stakeholders. Internally, consultants pursue ongoing certification tracks

and pair with senior architects in a deliberate mentorship model that sustains institutional knowledge. The

result is a delivery organisation that can flex from tactical quick-wins to multi-year transformation roadmaps

without compromising quality.

Why it matters. In a market where ERP initiatives have historically been synonymous with cost overruns,

HouseBlend is reframing NetSuite as a growth asset. Whether preparing a VC-backed retailer for its next

funding round or rationalising processes after acquisition, the firm delivers the technical depth, operational

discipline and business empathy required to make complex integrations invisible—and powerful—for the

people who depend on them every day.

DISCLAIMER

This document is provided for informational purposes only. No representations or warranties are made regarding the

accuracy, completeness, or reliability of its contents. Any use of this information is at your own risk. Houseblend shall

not be liable for any damages arising from the use of this document. This content may include material generated with

assistance from artificial intelligence tools, which may contain errors or inaccuracies. Readers should verify critical

information independently. All product names, trademarks, and registered trademarks mentioned are property of their

respective owners and are used for identification purposes only. Use of these names does not imply endorsement. This

document does not constitute professional or legal advice. For specific guidance related to your needs, please consult

qualified professionals.

houseblend.io

Page 20 of 20

https://houseblend.io/?utm_source=pdf
https://houseblend.io/?utm_source=pdf

