
Implementing NetSuite MCP Extensions for AI
Integration
Published May 28, 2025 30 min read

Building a Model Context Protocol (MCP)
Extension for NetSuite: A Guide for CFOs and
Administrators

houseblend.io

Page 1 of 18

https://houseblend.io/?utm_source=pdf
https://houseblend.io/?utm_source=pdf

Introduction

Generative AI is rapidly transforming how businesses operate, and CFOs are keen to harness these

tools for finance and operations. Oracle NetSuite, a leading cloud ERP, is embracing AI with features

like anomaly detection agents and natural language report generation (Source: the-cfo.io)(Source:

the-cfo.io). However, leveraging AI to its fullest often requires connecting these models directly to

enterprise data and workflows. This is where the Model Context Protocol (MCP) comes in. Think of

MCP as a “USB-C port” for AI applications – a standard way to plug an AI model into various data

sources and tools (Source: modelcontextprotocol.io). In NetSuiteʼs context, an MCP extension is

essentially a custom integration that allows AI agents to securely interface with NetSuiteʼs data and

business logic through this standard protocol. The goal of this guide is to explain what an MCP

extension is, why itʼs valuable for finance and operations, and how to build one using NetSuiteʼs

SuiteScript/SuiteCloud platform. Weʼll walk through the business rationale, technical implementation

steps, example use cases, and best practices so that both CFOs and NetSuite administrators can

understand and collaborate on this emerging capability.

What is a Model Context Protocol (MCP) Extension in

NetSuite?

Model Context Protocol (MCP) is an open standard that defines how AI models (like GPT-4 or

other large language models) can connect to external systems in a consistent way. Just as USB-C

standardized device connections, MCP standardizes how AI agents access tools and data (Source:

modelcontextprotocol.io). It provides a uniform JSON-RPC based interface for AI (“clients”) to

communicate with external services (“servers”), enabling the AI to request data or perform actions

without custom integration code for each new tool (Source: seangoedecke.com). An MCP server

exposes primitives such as tools (actions the AI can invoke), resources (data or documents it can

fetch), and prompts (pre-defined instructions) in a structured format (Source: seangoedecke.com)

(Source: seangoedecke.com).

In the context of NetSuite, an MCP extension refers to implementing an MCP-compatible server for

NetSuite – effectively a connector that translates AI requests into NetSuite operations and returns

results in the MCP format. This typically means creating a custom web service (using NetSuiteʼs

SuiteCloud platform) that can handle MCP's standardized requests like “tools/list” (to list available

NetSuite operations for the AI) and “tools/call” (to execute a specific operation) (Source:

seangoedecke.com). Under the hood, this extension leverages NetSuiteʼs APIs and scripting

houseblend.io

Page 2 of 18

https://houseblend.io/articles/integrating-ai-chatbots-netsuite-erp
https://houseblend.io/articles/netsuite-erp-comparison-guide
https://houseblend.io/articles/netsuite-ai-features-financial-automation
https://the-cfo.io/2025/03/26/netsuite-doubles-down-on-ai-to-streamline-uk-operations-at-suiteconnect-2025/#:~:text=,the%20need%20for%20technical%20support
https://the-cfo.io/2025/03/26/netsuite-doubles-down-on-ai-to-streamline-uk-operations-at-suiteconnect-2025/#:~:text=manual%20pain%20points%20in%20finance,the%20need%20for%20technical%20support
https://modelcontextprotocol.io/introduction#:~:text=MCP%20is%20an%20open%20protocol,different%20data%20sources%20and%20tools
https://houseblend.io/articles/cfo-netsuite-administrator-career-paths-comparison
https://modelcontextprotocol.io/introduction#:~:text=MCP%20is%20an%20open%20protocol,different%20data%20sources%20and%20tools
https://www.seangoedecke.com/model-context-protocol/#:~:text=So%20what%20does%20Domino%E2%80%99s%20have,model%20to%20do%20precise%20mathematics
https://www.seangoedecke.com/model-context-protocol/#:~:text=HTTP%20or%20stdin%2Fstdout,model%20to%20do%20precise%20mathematics
https://www.seangoedecke.com/model-context-protocol/#:~:text=Interestingly%2C%20MCP%20offers%20two%20other,a%20good%20way%20to%20use
https://www.seangoedecke.com/model-context-protocol/#:~:text=So%20what%20does%20Domino%E2%80%99s%20have,model%20to%20do%20precise%20mathematics
https://houseblend.io/?utm_source=pdf
https://houseblend.io/?utm_source=pdf

(SuiteScript) to perform the requested tasks (for example, retrieving financial data or creating a

transaction record) and then responds with structured JSON that the AI understands. In simpler

terms, the MCP extension is a bridge that lets an AI agent ask NetSuite to do something or fetch

information – using a language (protocol) both sides agree on.

Key characteristics of an MCP extension for NetSuite:

Standardized Interface: It adheres to the MCP specification, meaning any MCP-capable AI

agent can connect without custom code. The AI can discover what “tools” (functions) the

NetSuite server offers and invoke them through JSON-formatted requests (Source:

seangoedecke.com).

NetSuite Integration: It uses NetSuiteʼs suite of integration technologies (SuiteScript RESTlets,

SuiteTalk APIs, etc.) to execute operations. For example, it might use a SuiteScript to query

open invoices or post a journal entry on behalf of an AI request.

Secure and Controlled: The extension runs within NetSuiteʼs security framework (requiring

proper authentication and obeying role permissions), so data access and actions are governed

just like any other integration. This ensures the AI agent only does what itʼs authorized to do – a

critical factor for CFOs worried about data governance.

Customizable Tools: The organization can define which capabilities to expose. For instance, you

might allow “read” access to financial data (for reporting) while restricting “write” actions (like

posting transactions) or subjecting them to approval workflows, aligning with compliance

requirements.

In summary, an MCP extension turns NetSuite into an AI-accessible service. Itʼs like adding a new

API endpoint specifically designed for AI agent communication. This concept is gaining traction –

integration platforms and vendors are already enabling MCP for enterprise systems (MuleSoft even

allows exposing any API, from NetSuite to SAP, as an MCP-compatible service (Source:

mulesoft.com)). By building an MCP extension for NetSuite, you prepare your finance system to

interact with the next generation of AI-driven tools in a standardized, secure manner.

houseblend.io

Page 3 of 18

https://www.seangoedecke.com/model-context-protocol/#:~:text=The%20general%20idea%20is%20that,is%20called%20a%20%E2%80%9CMCP%20client%E2%80%9D
https://www.mulesoft.com/platform/ai/model-context-protocol#:~:text=%2A%20Connector,managed%20through%20the%20Anypoint%20Platform
https://houseblend.io/?utm_source=pdf
https://houseblend.io/?utm_source=pdf

Why Use MCP Extensions in Finance and Operations?

(Business & Technical Rationale)

Connecting AI agents to NetSuite via MCP is not just a tech novelty – it offers real business

advantages for finance and operations:

Real-Time Data Access for AI: Finance AI is only as good as the data it can see. MCP finally

gives AI models a way to access live business data, making them far more useful for work tasks

(Source: cdata.com). Instead of operating on stale data or static reports, an AI assistant (like a

“virtual financial analyst”) can query NetSuite in real time for up-to-the-minute numbers –

whether it's cash positions, budget vs. actuals, or inventory levels. This immediacy can enhance

decision-making and forecasting.

Enhanced Decision Support: CFOs are under pressure to “do more with less” and deliver

insights faster (Source: the-cfo.io). An MCP-enabled AI can help crunch numbers and generate

analysis on demand. For example, a CFO could ask an AI agent, “Whatʼs our operating cash flow

this quarter and how does it compare to last quarter?” The agent, through the MCP extension,

could pull the data from NetSuite and provide a quick analysis. This streamlines reporting and

analysis workflows that traditionally take finance teams days to compile.

Workflow Automation & Reduced Manual Effort: Many finance and operations processes are

ripe for automation – from reconciliation to expense approvals. AI agents equipped with MCP

can not only retrieve data but also initiate actions. Imagine an agent that monitors transactions

and, upon detecting an anomaly (say an unusually large expense), uses a NetSuite MCP tool to

flag it or even create a workflow task. NetSuite is already introducing AI-based anomaly

detection (e.g., the “Financial Exception Management Agent” that finds irregularities in real-

time (Source: the-cfo.io)); an MCP extension allows companies to build custom agents for their

unique needs, automating mundane tasks and letting staff focus on higher-value work.

Cross-System Integration via AI: CFOs oversee not just NetSuite, but a landscape of systems

(CRM, banking, procurement, etc.). MCP provides a common language for an AI to interact

with multiple systems. With standard connectors, the same AI agent could pull sales forecasts

from a CRM and expense data from NetSuite, then combine them to highlight overspending or

forecast accuracy. MuleSoftʼs example highlights this benefit: using MCP, an inventory

management agent can consolidate stock info from NetSuite, Salesforce, and a custom

database through one secure interface (Source: mulesoft.com). This unified context means

better recommendations and fewer blind spots for operations.

houseblend.io

Page 4 of 18

https://houseblend.io/articles/netsuite-finance-operations-integration
https://www.cdata.com/solutions/mcp/#:~:text=FEATURED%20%20Try%20CData%20MCP,%E2%86%92%20%20%20%2020
https://houseblend.io/articles/cfo-challenges-2025-economic-talent-data
https://the-cfo.io/2025/03/26/netsuite-doubles-down-on-ai-to-streamline-uk-operations-at-suiteconnect-2025/#:~:text=The%20timing%20is%20notable,and%20hybrid%20business%20model%20support
https://houseblend.io/articles/netsuite-ai-features-financial-automation
https://houseblend.io/articles/netsuite-ai-features-financial-automation
https://the-cfo.io/2025/03/26/netsuite-doubles-down-on-ai-to-streamline-uk-operations-at-suiteconnect-2025/#:~:text=,the%20need%20for%20technical%20support
https://houseblend.io/articles/oracle-netsuite-crm-on-demand-comparison
https://www.mulesoft.com/platform/ai/model-context-protocol#:~:text=Inventory%20management%20agents%20with%20full,context
https://houseblend.io/?utm_source=pdf
https://houseblend.io/?utm_source=pdf

Consistency and Flexibility: Technically, MCP eliminates the need for writing custom, model-

specific integration code for each AI or each system (Source: mulesoft.com). Whether you use

OpenAI, Anthropic, or another AI provider, the MCP extension for NetSuite remains the same.

This gives IT flexibility to switch AI models or platforms without rebuilding integrations (Source:

modelcontextprotocol.io). It also accelerates development – once NetSuiteʼs capabilities are

exposed via MCP, any compatible AI client can leverage them immediately. In essence, you

“build once” and can reuse across many AI tools or agents.

Improved AI Accuracy and Control: When AI agents have direct access to factual, company-

specific data, their responses are more accurate and grounded (reducing hallucinations)

(Source: mulesoft.com). For CFOs, this means more reliable insights. Additionally, by curating

the set of MCP tools an AI can use, administrators maintain control: the AI can only perform

approved actions and see allowed data. NetSuiteʼs new Prompt Management API echoes this

need for control in AI deployments (Source: the-cfo.io). An MCP extension gives similar control

– you define the “menu” of actions the AI can take (for example, read financial results, but not

initiate payments unless explicitly permitted), aligning AI usage with corporate policies and

compliance.

Future-Ready Infrastructure: According to industry experts, MCP is emerging as “a

foundational enabler for the next generation of intelligent, autonomous digital systems”,

addressing the limitations of traditional APIs as AI becomes more action-oriented (Source:

boomi.com). By implementing MCP extensions, finance leaders ensure their systems are ready

for these autonomous agents. Itʼs an investment in future-proofing the enterprise architecture

so that new AI capabilities can plug in with minimal friction. In other words, as AI evolves from a

passive advisor to a proactive actor, MCP-based integrations will be how it safely executes

context-aware decisions using your enterprise data (Source: boomi.com).

Bottom line for CFOs and Admins: MCP extensions unlock the full power of generative AI in

enterprise workflows. They allow AI agents to securely tap into NetSuiteʼs data and functions,

driving smarter automation and insights. Businesses can gain speed (faster answers, faster closes),

efficiency (automation of routine tasks), and confidence (AI that is informed by real data and

governed by your rules). Technically, MCP brings a clean, standardized approach to integration,

reducing one-off development and easing maintenance as you adopt AI solutions. This synergy of

business and tech benefits makes a compelling case for exploring MCP extensions in your NetSuite

environment.

houseblend.io

Page 5 of 18

https://www.mulesoft.com/platform/ai/model-context-protocol#:~:text=%2A%20Expose%20any%20MuleSoft,bring%20in%20critical%20business%20data
https://modelcontextprotocol.io/introduction#:~:text=MCP%20helps%20you%20build%20agents,and%20tools%2C%20and%20MCP%20provides
https://www.mulesoft.com/platform/ai/model-context-protocol#:~:text=By%20turning%20your%20existing%20APIs,new%20levels%20of%20workflow%20automation
https://the-cfo.io/2025/03/26/netsuite-doubles-down-on-ai-to-streamline-uk-operations-at-suiteconnect-2025/#:~:text=There%E2%80%99s%20also%20a%20Prompt%20Management,NetSuite%20spokesperson%20at%20the%20event
https://boomi.com/blog/model-context-protocol-how-to-use/#:~:text=The%20Model%20Context%20Protocol%20,tools%2C%20data%2C%20and%20enterprise%20logic
https://boomi.com/blog/model-context-protocol-how-to-use/#:~:text=The%20Model%20Context%20Protocol%20,tools%2C%20data%2C%20and%20enterprise%20logic
https://houseblend.io/?utm_source=pdf
https://houseblend.io/?utm_source=pdf

Implementation Overview: Building an MCP Extension with

SuiteScript

Building an MCP extension for NetSuite might sound complex, but it can be achieved with NetSuiteʼs

native customization tools. At a high level, the strategy is to create a SuiteScript RESTlet that acts

as the MCP server. A RESTlet is a custom RESTful web service you can write in JavaScript and

deploy inside NetSuite (Source: docs.oracle.com). The AI agent (MCP client) will send HTTP

requests (in JSON-RPC format) to this RESTlet, which will parse them, perform the requested

NetSuite action, and return a JSON response. Below, we break down the steps to implement this:

1. Prepare Your NetSuite Environment

Before coding, ensure you have the right features enabled and a proper development setup:

Enable SuiteCloud Features: In NetSuite, navigate to Setup > Company > Enable Features

and click the SuiteCloud subtab. Enable relevant features such as Server SuiteScript and

SuiteScript (Client & Server) if not already enabled. These allow you to deploy custom scripts.

Also enable Token-Based Authentication (TBA) under the Manage Authentication section

(Source: docs.oracle.com) – this is crucial for secure external calls.

Create an Integration Record (for external access): Go to Setup > Integration > Manage

Integrations > New. Create a new integration record, which will generate a Consumer Key and

Consumer Secret. This identifies your MCP extension for token-based authentication.

Set Up an Integration Role: Create a dedicated role for the AI integration (via Setup >

Users/Roles > Manage Roles > New). Assign permissions read-only or limited to what the AI

needs (for example, “Transactions – View” for reporting, or specific record access). For safety,

you might start with view-only permissions and no permission to create or edit records, unless a

use case demands it. This principle of least privilege ensures the AI cannot access sensitive

data or make changes outside its scope.

Token Credentials: Assign the integration role to a user (could be an “API user” account).

Then, under Setup > Users/Roles > Access Tokens, create a new token for the integration

(choose the integration record, user, and role). This will give you a Token ID and Token Secret.

Together with the Consumer Key/Secret, these tokens will be used by the AI agent to

authenticate when calling the RESTlet. NetSuiteʼs token-based auth is an industry-standard

houseblend.io

Page 6 of 18

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4387799403.html#:~:text=A%20RESTlet%20is%20a%20SuiteScript,value%20to%20the%20calling%20application
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/chapter_4247329078.html#:~:text=NetSuite%20supports%20token,services%20integrations%20storing%20user%20credentials
https://houseblend.io/?utm_source=pdf
https://houseblend.io/?utm_source=pdf

mechanism that avoids needing to hard-code a user password, and it works with any existing

account authentication policies (like 2FA or SSO) (Source: docs.oracle.com)(Source:

docs.oracle.com).

Note: Treat these keys and tokens like passwords – they grant access to your system via the MCP

extension. Only provide them to the AI agent or service that will be making the calls, and store them

securely. With environment set up, you are ready to develop the MCP RESTlet.

2. Developing the SuiteScript RESTlet

NetSuiteʼs SuiteScript 2.x API will be used to create the RESTlet. Weʼll write the script in JavaScript.

The RESTlet will implement endpoints corresponding to MCP actions. Specifically, we need to

handle two primary request types from the AI client:

tools/list : The AI asks: “What can you do?” – our RESTlet should respond with a list of

available tools (operations) and their descriptions/parameters.

tools/call : The AI requests: “Perform this specific tool action with these parameters.” – the

RESTlet will execute the requested operation in NetSuite (like running a query or creating a

record) and return the result or confirmation.

For simplicity, weʼll design the RESTlet such that:

A GET request returns the list of tools (for tools/list), and

A POST request with a JSON body is used for tools/call (carrying the tool name and

parameters).

This is just one approach; you could also use a single POST endpoint and inspect the JSON-RPC

“method” field to distinguish actions. The implementation can vary, but clarity and compliance with

MCP's JSON-RPC structure are the goals.

Below is a simplified example of how the SuiteScript RESTlet could be structured. This example

exposes one read-only tool (for demonstration) and illustrates how to handle incoming requests:

javascript

Copy

houseblend.io

Page 7 of 18

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/chapter_4247329078.html#:~:text=NetSuite%20supports%20token,services%20integrations%20storing%20user%20credentials
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/chapter_4247329078.html#:~:text=Password%20rotation%20policies%20in%20the,on%20permissions%20with%20TBA
https://houseblend.io/?utm_source=pdf
https://houseblend.io/?utm_source=pdf

/** *@NApiVersion 2.1 *@NScriptType Restlet */ define(['N/query', 'N/search'],

function(query, search) { // Define the tools our MCP server will offer const

toolsCatalog = [{ name: "getOpenInvoiceCount", description: "Count open invoices

(unpaid) in NetSuite", params: {} // no parameters needed for this example }, // You

can list more tools here with their name, description, and expected params]; //

Handle GET requests (e.g., tools/list) function get(context) { // Typically, we'd

verify if context.method == "tools/list" (if passed), // but if we dedicate GET for

listing, we simply return the catalog. return { jsonrpc: "2.0", result:

toolsCatalog, id: context && context.id ? context.id : null }; } // Handle POST

requests (e.g., tools/call) function post(requestBody) { // 'requestBody' is a JS

object parsed from the JSON POST. // We expect it to contain MCP fields like method,

params, id. if (!requestBody || requestBody.method !== "tools/call") { return {

error: "Invalid request" }; } let result; try { const toolName =

requestBody.params.name; const args = requestBody.params.args || {}; switch

(toolName) { case "getOpenInvoiceCount": result = getOpenInvoiceCount(); // call our

helper function break; // case "otherTool": handle other tools... default: throw new

Error("Unknown tool: " + toolName); } // Return JSON-RPC success response return {

jsonrpc: "2.0", id: requestBody.id, result: result }; } catch (e) { // Return JSON-

RPC error response return { jsonrpc: "2.0", id: requestBody ? requestBody.id : null,

error: { message: e.message } }; } } // Example tool implementation: count open

invoices using a saved search or query function getOpenInvoiceCount() { // We will

count all invoices that have amount remaining > 0 const invoiceSearch =

search.create({ type: search.Type.INVOICE, filters: [['amountremaining',

'greaterthan', 0] // filter for unpaid invoices], columns: [search.createColumn({

name: 'internalid', summary: search.Summary.COUNT })] }); const searchResult =

invoiceSearch.run().getRange({ start: 0, end: 1 }); // The result will have the

count in the first result's column value let count = 0; if (searchResult &&

searchResult.length > 0) { count = searchResult[0].getValue({ name: 'internalid',

summary: search.Summary.COUNT }); } return { openInvoiceCount: parseInt(count, 10)

}; } // Expose the RESTlet entry points return { get: get, post: post }; });

In this code sample:

We declare the script as a RESTlet (@NScriptType Restlet) for SuiteScript 2.1.

houseblend.io

Page 8 of 18

https://houseblend.io/?utm_source=pdf
https://houseblend.io/?utm_source=pdf

toolsCatalog is a simple array defining what tools are available. In a real scenario, you might

build this list dynamically or have more detailed metadata (such as parameter types, etc.). Here

we list one tool: "getOpenInvoiceCount" , which will count open invoices. This is a read-only

operation useful in a reporting context. You could add more tools like "getFinancialSummary"

or "createExpenseReportDraft" depending on your needs, each with appropriate

descriptions and parameters.

The get function handles GET requests by returning the list of tools in a JSON-RPC compliant

format. We wrap the result in an object with jsonrpc: "2.0" , and echo back an id if

provided (the MCP client may use an ID to match requests/responses). The tools list is provided

under result . This aligns with MCPʼs expectation that a tools/list call returns a list of tools

(Source: seangoedecke.com).

The post function handles the core logic for tools/call . It expects the request body to

contain a method "tools/call" and a params object indicating which tool to execute. We

extract the tool name and any arguments. A simple switch dispatches to the corresponding

internal function (here getOpenInvoiceCount). We wrap the result similarly in a JSON-RPC

response object. On error, we catch exceptions and format a JSON-RPC error response. This

structure ensures the AI agent will receive a standardized reply indicating either a result or an

error.

The helper function getOpenInvoiceCount() demonstrates using NetSuiteʼs APIs to retrieve

data. In this case we use the SuiteScript N/search module to count invoice records with an

outstanding balance. We create a search on transaction type Invoice with a filter

amountremaining > 0 (meaning the invoice has not been fully paid), and use an aggregate

COUNT on internal IDs to count the results. The search result gives us the count of open

invoices, which we return as a simple object { openInvoiceCount: <number> } . We could

also use the N/query module with a SuiteQL query for potentially better performance (Source:

docs.oracle.com), for example:

javascript

Copy

// Alternative: SuiteQL for counting open invoices (illustrative) let resultSet

= query.runSuiteQL({ query: "SELECT COUNT(*) as cnt FROM transaction WHERE type =

'Inv' AND status <> 'Paid'" }); let count = resultSet.asMappedResults()[0].cnt;

return { openInvoiceCount: count };

houseblend.io

Page 9 of 18

https://www.seangoedecke.com/model-context-protocol/#:~:text=So%20what%20does%20Domino%E2%80%99s%20have,model%20to%20do%20precise%20mathematics
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_157960623712.html#:~:text=In%20SuiteScript%2C%20you%20can%20create,SuiteQL%20in%20the%20N%2Fquery%20Module
https://houseblend.io/?utm_source=pdf
https://houseblend.io/?utm_source=pdf

SuiteQL (NetSuiteʼs SQL-like query language) can handle complex queries and often yields

better performance for large data sets (Source: docs.oracle.com). NetSuite administrators can

choose the method (search vs query) based on familiarity and performance needs. The key

point is that our MCP extension can leverage any SuiteScript capability – searches, queries,

record creation, etc. – to fulfill AI requests.

Note the liberal use of comments (// ...) in the code above – these are for explanatory

purposes. In practice, maintain clean code, and consider logging important events (using

log.debug in SuiteScript) to help with debugging or auditing AI-driven activities.

Once the script is written, upload it to the File Cabinet (typically in SuiteScripts folder) and create a

Script record of type RESTlet, then a Script Deployment for it (accessible to external services).

NetSuite will provide a unique URL for the RESTlet upon deployment (of the form

https://<account>.restlets.api.netsuite.com/app/site/hosting/restlet.nl?script=

<id>&deploy=<dep_id>). This URL, along with the account ID and the token credentials from

earlier, will be used by the AI agent to send MCP requests.

3. Configuration and Deployment

After coding, a few configuration steps remain to make sure everything works smoothly in

production:

Testing in Sandbox: Itʼs highly recommended to test your MCP extension in a NetSuite

Sandbox or Release Preview account first. This ensures that the tools perform as expected and

that security is properly enforced. You can use a tool like cURL or Postman to simulate the AIʼs

requests: call the RESTlet URL with an Authorization header (using OAuth1.0 with your token

key/secret and consumer key/secret) and a JSON payload. For example, to test the

getOpenInvoiceCount tool, you would send a POST request with a JSON body: { "jsonrpc":

"2.0", "id": 1, "method": "tools/call", "params": { "name":

"getOpenInvoiceCount", "args": {} } } . The response should be a JSON containing

"result": { "openInvoiceCount": 42 } (with 42 being whatever count is in your test data).

If you get this working, it confirms the extension is functioning. NetSuiteʼs SuiteScript logs

(under Customization > Scripting > Script Execution Log) will capture any errors thrown by

your script, which can help troubleshoot issues during testing.

Deployment to Production: Once validated, deploy the script in production. Use the

SuiteCloud Development Framework (SDF) for a more controlled deployment if you have

multiple accounts or want source control. SDF allows you to manage the script file and

houseblend.io

Page 10 of 18

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_157960623712.html#:~:text=In%20SuiteScript%2C%20you%20can%20create,SuiteQL%20in%20the%20N%2Fquery%20Module
https://houseblend.io/?utm_source=pdf
https://houseblend.io/?utm_source=pdf

deployment as part of a project and can deploy to different accounts reliably (Source:

docs.oracle.com). Alternatively, manually create the script and deployment in the production

account as done in sandbox. Ensure the integration record and tokens are created in production

as well (tokens donʼt migrate automatically from sandbox (Source: docs.oracle.com)). Keep

track of the production RESTlet URL and update any client configuration to use it.

Client (AI Agent) Setup: The AI agent (which could be a custom application, an integration

platform like MuleSoft/Boomi, or even an AI tool supporting MCP) needs to be pointed at this

new MCP server. Typically, you will provide the agent with the RESTlet URL, and the necessary

credentials (account ID, consumer key/secret, token ID/secret). Many enterprise AI platforms

are beginning to allow custom MCP server connections by simply plugging in the URL and an

auth method. For example, MuleSoftʼs Anypoint can expose integrations as MCP endpoints with

a few clicks (Source: mulesoft.com); in our case, we did the heavy lifting manually, but the

concept is the same. Once the agent knows about the NetSuite MCP extension, it can call

tools/list to get the available tools and then start invoking them in its reasoning process.

Security Checks: Double-check that the role used by the RESTlet has only the permissions

needed. For instance, if you only intended to allow data reads, verify it has no edit permissions.

NetSuite will naturally prevent access to records the role doesnʼt permit, even if the script tries,

but it's best to design the script to avoid such calls. Also consider enabling SuiteCloud Logging

and Analytics features to monitor API calls. Each RESTlet call is logged; monitoring frequency

of calls and data volumes can alert you to any misuse or performance issues.

Error Handling & Timeouts: In production, ensure your script gracefully handles expected

issues. For example, if an AI requests a tool that doesnʼt exist, we returned an error in the JSON.

You might expand that to list valid tools. Also, consider if any tool action might take long (like a

massive query); those might need optimization or breaking into chunks. NetSuite RESTlets have

a script governance (usage) limit and time limit – if an AI asks for something that would exceed

those (like retrieving tens of thousands of records in one go), the request could fail. You may

need to implement pagination or limits and have the AI request data in pieces.

By this stage, we have a working MCP extension: NetSuite is now reachable by AI agents through a

secure, standardized interface. Weʼve essentially created a finance-focused toolkit that AI can use

– next, weʼll explore what we can do with it.

houseblend.io

Page 11 of 18

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4387799403.html#:~:text=You%20can%20use%20SuiteCloud%20Development,to%20Account%2C%20see%20%209
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/chapter_4247329078.html#:~:text=Note%3A
https://www.mulesoft.com/platform/ai/model-context-protocol#:~:text=%2A%20Expose%20any%20MuleSoft,bring%20in%20critical%20business%20data
https://houseblend.io/?utm_source=pdf
https://houseblend.io/?utm_source=pdf

Examples and Use Cases for Finance & Operations

With the MCP extension in place, what can CFOs and administrators actually achieve? Here are

several high-impact use cases that illustrate how this integration can be applied in the real world:

1. On-Demand Financial Reporting Assistant: Imagine a virtual financial analyst that can

answer questions in natural language by fetching data from NetSuite. A CFO could ask, “What

are the top 5 customers by revenue this month?” The AI agent would use a tool like

getTopCustomers(period) via MCP to query NetSuite and then present an answer. This saves

finance teams the time of running reports or exporting data. Itʼs akin to NetSuiteʼs

SuiteAnalytics NLQ Assistant but fully customizable to any metric or format you want (Source:

the-cfo.io). You could extend the MCP tools to provide summary financial statements, key

ratios, or budget vs actual comparisons. The result is faster decision support – CFOs get

insights in seconds during meetings or planning sessions.

2. Financial Close and Compliance Automation: Month-end and quarter-end closures involve

many checks and reconciliations. An AI agent could proactively assist in these processes. For

example, a compliance agent could use a tool findUnapprovedJournals() to list any journal

entries in NetSuite that were posted without proper approval. It could cross-verify transactions

against a policy (maybe using another data source too) and flag exceptions. Similarly, an agent

could query for any unreconciled payments or inventory count discrepancies via MCP tools, and

either alert responsible owners or even initiate corrective entries (with human oversight). This

kind of AI-driven audit can help CFOs catch issues early, enforce controls, and reduce the risk

of compliance breaches. Notably, evolving regulations like e-invoicing mandates or audit trails

can be monitored by such agents, helping finance teams stay compliant with less manual effort

(Source: the-cfo.io).

3. Cash Flow and Treasury Management: Treasury teams can benefit from real-time

aggregation of cash data. An AI agent connected via MCP could pull bank balance information

(if available in NetSuite or through another MCP connector) and combine it with NetSuiteʼs

accounts receivable and payable data to provide an up-to-the-minute cash position. For

instance, a tool getCashForecast(days) might retrieve from NetSuite all invoices due and bills

to pay in the next N days, helping project cash needs. The AI could then even suggest actions

(like “You might delay vendor X payment to maintain a positive cash balance, as AI-integrated

planning systems do). While NetSuite has dashboards for such metrics, the AI can provide a

houseblend.io

Page 12 of 18

https://the-cfo.io/2025/03/26/netsuite-doubles-down-on-ai-to-streamline-uk-operations-at-suiteconnect-2025/#:~:text=manual%20pain%20points%20in%20finance,the%20need%20for%20technical%20support
https://the-cfo.io/2025/03/26/netsuite-doubles-down-on-ai-to-streamline-uk-operations-at-suiteconnect-2025/#:~:text=The%20timing%20is%20notable,and%20hybrid%20business%20model%20support
https://houseblend.io/?utm_source=pdf
https://houseblend.io/?utm_source=pdf

conversational interface and even take into account external factors (like reading news about a

big clientʼs financial health via another tool) – giving CFOs a smart assistant for liquidity

management.

4. Inventory and Operations Coordination: For COOs or operations managers using NetSuite,

MCP agents can coordinate data across systems to optimize supply chain decisions. The

MuleSoft example is telling: an inventory agent was able to consider stock levels from NetSuite

alongside other systems to make better restocking recommendations (Source: mulesoft.com).

In practice, you could have a tool getInventory(item, location) on NetSuiteʼs MCP

extension to provide stock on hand. The AI agent could then use another MCP connector for,

say, a warehouse management system or supplier API. By collating this info, the agent might

alert operations, “Item ABC is below safety stock in the New York warehouse, and our supplierʼs

lead time is 2 weeks. I recommend reordering 500 units.” This level of cross-context analysis is

possible because MCP standardizes how the agent fetches data from each system, NetSuite

included, making it straightforward to build multi-system logic.

5. AI-Augmented Data Entry and Transaction Processing: While many CFOs will be cautious

about letting AI directly write into ERP systems, there are controlled scenarios where it adds

value. For example, consider employee expense reports. An AI could read receipts (using an

OCR tool), categorize expenses, and then use a NetSuite MCP tool like

createExpenseReportDraft(data) to create a pending expense report transaction. The

employee or an approver then just reviews and submits it. Similarly, for accounts payable, an AI

might draft vendor bills from invoices (using an MCP connector to a document processing

service, then posting via NetSuite). All such entries could be saved in a status that requires

approval, ensuring human review before anything impacts the books. This use case automates

data entry and reduces errors – the finance team becomes reviewers and exception-handlers

rather than data input clerks.

6. Interactive CFO Dashboards and Chatbots: An MCP extension can also power new

interfaces. Think of a Slack bot or Microsoft Teams chatbot for your finance team. Team

members could query “@FinanceBot, what's the latest gross margin for product line X?” and

the bot (backed by an AI using the MCP extension) would retrieve the answer from NetSuite and

respond in chat. It could also trigger actions: “@FinanceBot, close accounting period for

October” – the AI might invoke a closePeriod(period) tool on NetSuite (if provided) to

automate that administrative task, again possibly under certain checks. This creates a more

natural and immediate way to interact with NetSuite data and functions, increasing productivity

for users who no longer have to navigate the UI for every little query or update.

houseblend.io

Page 13 of 18

https://www.mulesoft.com/platform/ai/model-context-protocol#:~:text=Inventory%20management%20agents%20with%20full,context
https://houseblend.io/?utm_source=pdf
https://houseblend.io/?utm_source=pdf

These examples scratch the surface. Fundamentally, any repetitive data query or rules-based

process in NetSuite could be delegated to an AI agent via MCP, and any scenario where insight

emerges from combining NetSuite data with other sources is a strong candidate as well. CFOs and

administrators should brainstorm pain points in their finance processes – chances are, an MCP-

connected AI could alleviate many of them, either by providing timely information or taking

autonomous action (with oversight).

Best Practices and Considerations

Implementing an MCP extension touches both technology and policy. Here are some best practices

to keep the deployment effective, secure, and aligned with business goals:

Start Read-Only, Then Expand: Begin by exposing only read-only tools (queries, reports,

calculations). This lets you safely evaluate how the AI uses the data and gauge accuracy. CFOs

will gain trust in the AIʼs outputs. Once comfortable, you can gradually introduce write tools (like

creating records), if thereʼs clear value – and even then, prefer creating draft or pending

records that require human approval in NetSuite.

Security & Governance: Always enforce authentication (Token-Based Auth or OAuth 2.0) for

the RESTlet; never leave it open. Use a dedicated integration user with a tightly scoped role.

Monitor the usage: NetSuite provides logs of RESTlet calls – review these periodically. Also

consider the data the AI sees: if itʼs going to external cloud AI services, ensure no sensitive PII

or financial secrets are exposed without proper encryption or agreements in place. One

advantage of MCP is that you can self-host the server (in this case, itʼs within NetSuite), so data

stays within your control until the moment the AI needs it. Even then, you could have the MCP

extension mask or anonymize certain data fields if needed for privacy. Remember that MCP

itself doesnʼt add security; itʼs up to implementers to secure the channels and data (Source:

apideck.com). In practice, that means using HTTPS (NetSuite RESTlets already require TLS),

strong authentication, and perhaps rate limiting to prevent abuse.

Error Handling and AI Instructions: Be explicit in your tool definitions and error messages. For

example, if a tool requires a parameter (like a period or record ID), validate it and return a

helpful error via JSON if itʼs missing or invalid. AI agents will often relay these errors to users or

use them to adjust their strategy. Clear feedback from the MCP extension makes the AIʼs

performance better. If a tool might take time or has side effects, consider coding in safeguards.

houseblend.io

Page 14 of 18

https://www.apideck.com/blog/a-primer-on-the-model-context-protocol#:~:text=Model%20Context%20Protocol%20,robust%20security%20governance%20by%20default
https://houseblend.io/?utm_source=pdf
https://houseblend.io/?utm_source=pdf

You might even include in the toolsCatalog description some guidance like “(Note: returns

results for the current fiscal year only)” to steer the AI. This is analogous to prompt design –

you are helping the AI understand how to use the tools properly.

Performance Optimization: Keep an eye on how heavy each tool operation is. Reports or

searches that scan a lot of data might slow down or hit NetSuiteʼs governance limits. If an AI

requests many such operations in a short time (imagine a zealous agent asking for every single

transaction detail), it could strain your account. Mitigate this by optimizing queries (use SuiteQL

where appropriate, as itʼs often faster (Source: docs.oracle.com)) and by implementing some

form of usage control. You could program the MCP extension to decline or throttle requests that

would be too expensive (and have the AI handle that scenario). Additionally, use NetSuiteʼs

asynchronous processing (Map/Reduce scripts, scheduled scripts) if an agentʼs request is too

heavy for a real-time response – the extension could acknowledge the request and then later

provide results via another channel or a polling mechanism. These designs ensure the AI

integration doesnʼt degrade the performance for regular NetSuite users.

Collaboration Between CFOs and Admins: This guide is meant for both finance leaders and

technical implementers. Itʼs vital they work together. CFOs should define the problems to solve

and the boundaries for AI (what it can and cannot do). Administrators should translate that into

technical tools and ensure compliance with NetSuiteʼs best practices. Regularly review the MCP

extensionʼs toolset – as business needs evolve, you might add new tools (e.g., a new report) or

deprecate others. Treat the MCP extension as a living product: maintain documentation for each

tool (what it does, what it returns), so that anyone interfacing or updating the AI agent knows

how to use it.

Leverage Official Resources and Community: Because MCP is new, keep an eye on official

documentation and community examples. NetSuiteʼs own documentation will help with

SuiteScript specifics (for example, how to use certain record APIs or SuiteCloud Dev

Framework) (Source: docs.oracle.com). Meanwhile, the MCP community is growing – tools like

CDataʼs MCP Servers provide out-of-the-box connectors for NetSuite (Source: cdata.com)

(useful for comparison or inspiration), and companies like MuleSoft are publishing guides on

turning integrations into MCP endpoints (Source: mulesoft.com). Oracle itself is integrating AI

across NetSuite (with things like Oracle Code Assist and the aforementioned SuiteAnalytics

Assistant), so expect more native solutions; however, the MCP extension you build will give you

flexibility beyond the out-of-the-box features. Participating in forums or user groups (e.g., the

NetSuite professionals subreddit or LinkedIn groups) and the broader MCP discussion (there

are communities forming around the MCP spec) can provide insights, troubleshooting tips, and

novel use cases others have discovered.

houseblend.io

Page 15 of 18

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_157960623712.html#:~:text=In%20SuiteScript%2C%20you%20can%20create,SuiteQL%20in%20the%20N%2Fquery%20Module
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4387799403.html#:~:text=A%20RESTlet%20is%20a%20SuiteScript,value%20to%20the%20calling%20application
https://www.cdata.com/solutions/mcp/#:~:text=FEATURED%20%20Try%20CData%20MCP,%E2%86%92%20%20%20%2020
https://www.mulesoft.com/platform/ai/model-context-protocol#:~:text=%2A%20Expose%20any%20MuleSoft,bring%20in%20critical%20business%20data
https://houseblend.io/?utm_source=pdf
https://houseblend.io/?utm_source=pdf

Conclusion

The convergence of AI and enterprise software is creating exciting opportunities for finance and

operations. By building a Model Context Protocol extension for NetSuite, CFOs and NetSuite

administrators can jointly unlock these opportunities – bringing intelligent automation and insight

directly into their core financial systems. We defined an MCP extension as a standardized “bridge”

that lets AI agents securely interact with NetSuite. Using SuiteScript, we can implement this bridge

as a RESTlet that exposes selected NetSuite data and functions as MCP-compatible tools. The

business rationale is strong: from real-time analytics and automated compliance checks to

streamlined workflows and multi-system coordination, an MCP extension empowers AI to deliver

tangible value in a CFOʼs world.

Technically, we walked through how to set up and code the extension, emphasizing security (token-

based auth, role permissions) and clarity (well-defined tools and responses). The examples

provided – such as an AI financial analyst, compliance monitor, or chatbot interface – are not

science fiction but attainable projects that can be piloted today. As with any powerful technology,

governance is key. Start small, keep humans in the loop, and iterate. Use the extension to augment

your team, not replace their judgment.

In closing, adopting MCP in the NetSuite ecosystem positions your organization at the forefront of

the AI-driven business revolution. It means your NetSuite data and processes can seamlessly

connect to AI agents – whether developed in-house or provided by vendors – in a secure,

controlled, and scalable way. With vendors like Oracle, MuleSoft, Boomi, and others championing

MCP as a new standard (Source: boomi.com)(Source: mulesoft.com), this approach is likely to

become more common and supported. By getting started now, CFOs can drive innovation in finance

automation while administrators ensure the technical foundations are solid. The result is a finance

function that is not only automated and efficient, but also intelligent and adaptable – ready to meet

the challenges of today and the surprises of tomorrow.

Sources:

Oracle NetSuite Documentation – SuiteScript 2.x RESTlet Script Type (Source:

docs.oracle.com) and Token-Based Authentication (Source: docs.oracle.com) (for

understanding integration setup and security).

MuleSoft Blog – Introducing Model Context Protocol Support (2023) (Source: mulesoft.com)

(Source: mulesoft.com) (Source: mulesoft.com)(Source: mulesoft.com) (on how MCP enables

agents to interact with enterprise systems like NetSuite, and examples of use cases).

houseblend.io

Page 16 of 18

https://boomi.com/blog/model-context-protocol-how-to-use/#:~:text=The%20Model%20Context%20Protocol%20,tools%2C%20data%2C%20and%20enterprise%20logic
https://www.mulesoft.com/platform/ai/model-context-protocol#:~:text=Model%20Context%20Protocol%20,MCP%20Support%2C%20organizations%20can%20now
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4387799403.html#:~:text=A%20RESTlet%20is%20a%20SuiteScript,value%20to%20the%20calling%20application
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/chapter_4247329078.html#:~:text=NetSuite%20supports%20token,services%20integrations%20storing%20user%20credentials
https://www.mulesoft.com/platform/ai/model-context-protocol#:~:text=Model%20Context%20Protocol%20,MCP%20Support%2C%20organizations%20can%20now
https://www.mulesoft.com/platform/ai/model-context-protocol#:~:text=By%20turning%20your%20existing%20APIs,new%20levels%20of%20workflow%20automation
https://www.mulesoft.com/platform/ai/model-context-protocol#:~:text=%2A%20Connector,managed%20through%20the%20Anypoint%20Platform
https://www.mulesoft.com/platform/ai/model-context-protocol#:~:text=Inventory%20management%20agents%20with%20full,context
https://houseblend.io/?utm_source=pdf
https://houseblend.io/?utm_source=pdf

CData Software – Ask your AI for answers from any data source with CData MCP Servers

(Source: cdata.com) (highlighting the value of MCP in giving AI access to business data).

Anthropic & Community Resources – Model Context Protocol Introduction (Source:

modelcontextprotocol.io)(Source: modelcontextprotocol.io) and Sean Goedeckeʼs MCP

explained simply (Source: seangoedecke.com)(Source: seangoedecke.com) (explaining MCPʼs

concept, JSON-RPC interface, and how servers list and execute tools).

The CFO.io – NetSuite debuts AI upgrades at SuiteConnect 2025 (Source: the-cfo.io)(Source:

the-cfo.io) (Source: the-cfo.io)(Source: the-cfo.io) (illustrating the push for AI in NetSuite and

CFOsʼ interest in AI for finance).

Boomi Blog – How to Use Model Context Protocol the Right Way (Source: boomi.com) (on the

emerging importance of MCP for enterprise AI integration).

Tags: netsuite, mcp protocol, ai integration, suitescript, suitecloud, enterprise data, customization,

generative ai

About Houseblend

HouseBlend.io is a specialist NetSuite™ consultancy built for organizations that want ERP and integration

projects to accelerate growth—not slow it down. Founded in Montréal in 2019, the firm has become a trusted

partner for venture-backed scale-ups and global mid-market enterprises that rely on mission-critical data

flows across commerce, finance and operations. HouseBlendʼs mandate is simple: blend proven business

process design with deep technical execution so that clients unlock the full potential of NetSuite while

maintaining the agility that first made them successful.

Much of that momentum comes from founder and Managing Partner Nicolas Bean, a former Olympic-level

athlete and 15-year NetSuite veteran. Bean holds a bachelorʼs degree in Industrial Engineering from École

Polytechnique de Montréal and is triple-certified as a NetSuite ERP Consultant, Administrator and

SuiteAnalytics User. His résumé includes four end-to-end corporate turnarounds—two of them M&A exits—

giving him a rare ability to translate boardroom strategy into line-of-business realities. Clients frequently cite

his direct, “coach-style” leadership for keeping programs on time, on budget and firmly aligned to ROI.

End-to-end NetSuite delivery. HouseBlendʼs core practice covers the full ERP life-cycle: readiness

assessments, Solution Design Documents, agile implementation sprints, remediation of legacy

customisations, data migration, user training and post-go-live hyper-care. Integration work is conducted by

in-house developers certified on SuiteScript, SuiteTalk and RESTlets, ensuring that Shopify, Amazon,

houseblend.io

Page 17 of 18

https://www.cdata.com/solutions/mcp/#:~:text=FEATURED%20%20Try%20CData%20MCP,%E2%86%92%20%20%20%2020
https://modelcontextprotocol.io/introduction#:~:text=MCP%20is%20an%20open%20protocol,different%20data%20sources%20and%20tools
https://modelcontextprotocol.io/introduction#:~:text=MCP%20helps%20you%20build%20agents,and%20tools%2C%20and%20MCP%20provides
https://www.seangoedecke.com/model-context-protocol/#:~:text=So%20what%20does%20Domino%E2%80%99s%20have,model%20to%20do%20precise%20mathematics
https://www.seangoedecke.com/model-context-protocol/#:~:text=The%20general%20idea%20is%20that,is%20called%20a%20%E2%80%9CMCP%20client%E2%80%9D
https://the-cfo.io/2025/03/26/netsuite-doubles-down-on-ai-to-streamline-uk-operations-at-suiteconnect-2025/#:~:text=The%20timing%20is%20notable,and%20hybrid%20business%20model%20support
https://the-cfo.io/2025/03/26/netsuite-doubles-down-on-ai-to-streamline-uk-operations-at-suiteconnect-2025/#:~:text=,the%20need%20for%20technical%20support
https://the-cfo.io/2025/03/26/netsuite-doubles-down-on-ai-to-streamline-uk-operations-at-suiteconnect-2025/#:~:text=manual%20pain%20points%20in%20finance,the%20need%20for%20technical%20support
https://the-cfo.io/2025/03/26/netsuite-doubles-down-on-ai-to-streamline-uk-operations-at-suiteconnect-2025/#:~:text=There%E2%80%99s%20also%20a%20Prompt%20Management,NetSuite%20spokesperson%20at%20the%20event
https://boomi.com/blog/model-context-protocol-how-to-use/#:~:text=The%20Model%20Context%20Protocol%20,tools%2C%20data%2C%20and%20enterprise%20logic
https://houseblend.io/?utm_source=pdf
https://houseblend.io/?utm_source=pdf

Salesforce, HubSpot and more than 100 other SaaS endpoints exchange data with NetSuite in real time. The

goal is a single source of truth that collapses manual reconciliation and unlocks enterprise-wide analytics.

Managed Application Services (MAS). Once live, clients can outsource day-to-day NetSuite and Celigo®

administration to HouseBlendʼs MAS pod. The service delivers proactive monitoring, release-cycle

regression testing, dashboard and report tuning, and 24 × 5 functional support—at a predictable monthly

rate. By combining fractional architects with on-demand developers, MAS gives CFOs a scalable alternative

to hiring an internal team, while guaranteeing that new NetSuite features (e.g., OAuth 2.0, AI-driven insights)

are adopted securely and on schedule.

Vertical focus on digital-first brands. Although HouseBlend is platform-agnostic, the firm has carved out a

reputation among e-commerce operators who run omnichannel storefronts on Shopify, BigCommerce or

Amazon FBA. For these clients, the team frequently layers Celigoʼs iPaaS connectors onto NetSuite to

automate fulfilment, 3PL inventory sync and revenue recognition—removing the swivel-chair work that

throttles scale. An in-house R&D group also publishes “blend recipes” via the company blog, sharing

optimisation playbooks and KPIs that cut time-to-value for repeatable use-cases.

Methodology and culture. Projects follow a “many touch-points, zero surprises” cadence: weekly executive

stand-ups, sprint demos every ten business days, and a living RAID log that keeps risk, assumptions, issues

and dependencies transparent to all stakeholders. Internally, consultants pursue ongoing certification tracks

and pair with senior architects in a deliberate mentorship model that sustains institutional knowledge. The

result is a delivery organisation that can flex from tactical quick-wins to multi-year transformation roadmaps

without compromising quality.

Why it matters. In a market where ERP initiatives have historically been synonymous with cost overruns,

HouseBlend is reframing NetSuite as a growth asset. Whether preparing a VC-backed retailer for its next

funding round or rationalising processes after acquisition, the firm delivers the technical depth, operational

discipline and business empathy required to make complex integrations invisible—and powerful—for the

people who depend on them every day.

DISCLAIMER

This document is provided for informational purposes only. No representations or warranties are made regarding the

accuracy, completeness, or reliability of its contents. Any use of this information is at your own risk. Houseblend shall

not be liable for any damages arising from the use of this document. This content may include material generated with

assistance from artificial intelligence tools, which may contain errors or inaccuracies. Readers should verify critical

information independently. All product names, trademarks, and registered trademarks mentioned are property of their

respective owners and are used for identification purposes only. Use of these names does not imply endorsement. This

document does not constitute professional or legal advice. For specific guidance related to your needs, please consult

qualified professionals.

houseblend.io

Page 18 of 18

https://houseblend.io/?utm_source=pdf
https://houseblend.io/?utm_source=pdf

